
Cloud and Big Data Summer
School, Stockholm, Aug., 2015
Jeffrey D. Ullman

Finding Similar Sets
Application to Document Similarity
Shingling
Minhashing

 You can download a free copy of Mining of
Massive Datasets, by Jure Leskovec, Anand
Rajaraman, and U. at www.mmds.org

 Relevant readings:

 LSH: 3.1-3.4, 3.8.

 Stream algorithms: 4.1-4.6.

 PageRank: 5.1, 5.3-5.5.

 Clustering: 7.1-7.4.

 Graph algorithms: 10.2.4-10.2.5, 10.7, 10.8.7.

 MapReduce theory: 2.5-2.6.

2

http://www.mmds.org/

 Go to www.gradiance.com/services
 Create an account for yourself.

 Passwords are >10 letters and digits, at least one of
each.

 Register for class 3E5A44A9
 You can try homeworks as many times as you

like.
 When you submit, you get advice for wrong

answers and you can repeat the same problem,
but with a different choice of answers.

17/08/2015 Mining of Massive Datasets. Leskovec, Rajaraman and Ullman. Stanford University 3

http://www.gradiance.com/services

 Machine learning is cool, but it is not all you
need to know about mining “big data.”

 I’m going to cover some of the other ideas that
are worth knowing.

4

 How do we find “similar” items in a very large
collection of items without looking at every pair?

 A quadratic process.

 Locality-sensitive hashing (LSH) is the general
idea of hashing items into bins many times, and
looking only at those items that fall into the
same bin at least once.

 Hard part: arranging that only high-similarity
items are likely to fall into the same bucket.

 Starting point: “similar documents.”

5

6

Many data-mining problems can be expressed as
finding “similar” sets:

1. Pages with similar words, e.g., for classification
by topic.

2. NetFlix users with similar tastes in movies, for
recommendation systems.

3. Dual: movies with similar sets of fans.

4. Entity resolution.

7

 Given a body of documents, e.g., the Web, find
pairs of documents with a lot of text in
common, such as:

 Mirror sites, or approximate mirrors.

 Application: Don’t want to show both in a search.

 Plagiarism, including large quotations.

 Similar news articles at many news sites.

 Application: Cluster articles by “same story.”

8

1. Shingling: convert documents, emails, etc., to
sets.

2. Minhashing: convert large sets to short
signatures, while preserving similarity.

3. Locality-sensitive hashing: focus on pairs of
signatures likely to be similar.

9

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures :
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs :
those pairs
of signatures
that we need
to test for
similarity.

10

 A k-shingle (or k-gram) for a document is a
sequence of k characters that appears in the
document.

 Example: k=2; doc = abcab. Set of 2-shingles =
{ab, bc, ca}.

 Represent a doc by its set of k-shingles.

 Documents that are intuitively similar will have
many shingles in common.

 Changing a word only affects k-shingles within
distance k from the word.

 Reordering paragraphs only affects the 2k
shingles that cross paragraph boundaries.

 Example: k=3, “The dog which chased the cat”
versus “The dog that chased the cat”.

 Only 3-shingles replaced are g_w, _wh, whi, hic, ich,
ch_, and h_c.

11

12

 To compress long shingles, we can hash them
to (say) 4 bytes.

 Called tokens.

 Represent a doc by its tokens, that is, the set
of hash values of its k-shingles.

 Two documents could (rarely) appear to have
shingles in common, when in fact only the
hash-values were shared.

14

 The Jaccard similarity of two sets is the size of
their intersection divided by the size of their
union.

 Sim(S, T) = |ST|/|ST|.

15

3 in intersection.
8 in union.
Jaccard similarity
 = 3/8

S T

16

 Rows = elements of the universal set.

 Example: the set of all k-shingles.

 Columns = sets.
 1 in row e and column S if and only if e is a

member of S.
 Column similarity is the Jaccard similarity of

the sets of their rows with 1.
 Typical matrix is sparse.

17

 C1 C2

 0 1
 1 0
 1 1 Sim(C1, C2) =
 0 0 2/5 = 0.4
 1 1
 0 1

*

*

*

*

*
*

*

18

 Given columns C1 and C2, rows may be classified as:
 C1 C2

 a 1 1

 b 1 0

 c 0 1

 d 0 0
 Also, a = # rows of type a , etc.
 Note Sim(C1, C2) = a/(a +b +c).

19

 Imagine the rows permuted randomly.
 Define minhash function h(C) = the first row (in

the permuted order) in which column C has 1.
 Use several (e.g., 100) independent hash

functions to create a signature for each column.
 The signatures can be displayed in another

matrix – the signature matrix – whose columns
represent the sets and the rows represent the
minhash values, in order for that column.

20

Input matrix

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

0 1 0 1 3

4

7

6

1

2

5

Signature matrix M

1 2 1 2

5

7

6

3

1

2

4

1 4 1 2

4

5

2

6

7

3

1

2 1 2 1

21

 The probability (over all permutations of
the rows) that h(C1) = h(C2) is the same as
Sim(C1, C2).

 Both are a /(a +b +c)!
 Why?

 Look down the permuted columns
C1 and C2 until we see a 1.

 If it’s a type-a row, then h(C1) = h(C2). If a
type-b or type-c row, then not.

22

 The similarity of signatures is the fraction of the
minhash functions in which they agree.

 Thinking of signatures as columns of integers, the
similarity of signatures is the fraction of rows in
which they agree.

 Thus, the expected similarity of two signatures
equals the Jaccard similarity of the columns or
sets that the signatures represent.

 And the longer the signatures, the smaller will be the
expected error.

23

 Input matrix
1 2 3 4

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

0 1 0 1 3

4

7

6

1

2

5

Signature matrix M
 1 2 3 4

1 2 1 2

5

7

6

3

1

2

4

1 4 1 2

4

5

2

6

7

3

1

2 1 2 1

 1-3 2-4 1-2
Col/Col 0.75 0.75 0
Sig/Sig 0.67 1.00 0

24

 Suppose 1 billion rows.
 Hard to pick a random permutation of

1…billion.
 Also, representing a random permutation

requires 1 billion entries.
 And accessing rows in permuted order may

lead to thrashing.

25

 A good approximation to permuting rows:
pick, say, 100 hash functions.

 For each column c and each hash function hi,
keep a “slot” M(i, c).

 Intent: M(i, c) will become the smallest value
of hi(r) for which column c has 1 in row r.

 I.e., hi(r) gives order of rows for ith permutation.

26

for each row r do begin
 for each hash function hi do
 compute hi(r);
 for each column c
 if c has 1 in row r
 for each hash function hi do

 if hi(r) is smaller than M(i, c) then

 M(i, c) := hi(r);

end;

27

Row C1 C2
 1 1 0
 2 0 1
 3 1 1
 4 1 0
 5 0 1

h(x) = x mod 5, i.e., permutation
 [5,1,2,3,4]
g(x) = (2x+1) mod 5, i.e., permutation
 [2,5,3,1,4]

h(1) = 1 1 ∞
g(1) = 3 3 ∞

h(2) = 2 1 2
g(2) = 0 3 0

h(3) = 3 1 2
g(3) = 2 2 0

h(4) = 4 1 2
g(4) = 4 2 0

h(5) = 0 1 0
g(5) = 1 2 0

Sig1 Sig2

28

 Often, data is given by column, not row.

 Example: columns = documents, rows = shingles.

 If so, sort matrix once so it is by row.

30

 General idea: Generate from the collection of
all elements (signatures in our example) a small
list of candidate pairs: pairs of elements whose
similarity must be evaluated.

 For signature matrices: Hash columns to many
buckets, and make elements of the same bucket
candidate pairs.

31

 Pick a similarity threshold t, a fraction < 1.
 We want a pair of columns c and d of the

signature matrix M to be a candidate pair if and
only if their signatures agree in at least fraction t
of the rows.

 I.e., M(i, c) = M(i, d) for at least fraction t values of i.

32

 Big idea: hash columns of signature matrix M
several times.

 Arrange that (only) similar columns are likely
to hash to the same bucket.

 Candidate pairs are those that hash at least
once to the same bucket.

33

Matrix M

r rows
per band

b bands

One hash
value

One signature

34

 Divide matrix M into b bands of r rows.
 For each band, hash its portion of each column

to a hash table with k buckets.

 Make k as large as possible.

 Candidate column pairs are those that hash to
the same bucket for ≥ 1 band.

 Tune b and r to catch most similar pairs, but
few nonsimilar pairs.

35

Matrix M

Buckets

Columns 6 and 7 are
surely different.

Columns 2 and 6
are probably identical
in this band.

r rows b bands

36

 Suppose 100,000 columns.
 Signatures of 100 integers.
 Therefore, signatures take 40Mb.

 They fit easily into main memory.

 Want all 80%-similar pairs of documents.
 5,000,000,000 pairs of signatures can take a

while to compare.
 Choose 20 bands of 5 integers/band.

37

 Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328.

 Probability C1, C2 are not similar in any of the 20
bands: (1-0.328)20 = .00035 .

 i.e., about 1/3000th of the 80%-similar underlying
sets are false negatives.

38

 Probability C1, C2 identical in any one particular
band: (0.4)5 = 0.01 .

 Probability C1, C2 identical in ≥ 1 of 20 bands:
≤ 20 * 0.01 = 0.2 .

 But false positives much lower for similarities
<< 40%.

39

 Similarity s of two sets

Probability
of sharing
a bucket

t

No chance
if s < t

Probability
= 1 if s > t

40

Similarity s of two sets

Probability
of sharing
a bucket

Remember:
probability of equal
minhash values
= Jaccard similarity

t

False
positives

False
negatives

41

Similarity s of two sets

Probability
of sharing
a bucket

t

s r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

t ~ (1/b)1/r

42

 s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

43

 Tune r and c to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures.

 Check that candidate pairs really do have
similar signatures.

 Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar sets .

