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 You can download a free copy of Mining of 
Massive Datasets, by Jure Leskovec, Anand 
Rajaraman, and U. at www.mmds.org 

 Relevant readings: 

 LSH: 3.1-3.4, 3.8. 

 Stream algorithms: 4.1-4.6. 

 PageRank: 5.1, 5.3-5.5. 

 Clustering: 7.1-7.4. 

 Graph algorithms: 10.2.4-10.2.5, 10.7, 10.8.7. 

 MapReduce theory: 2.5-2.6. 
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http://www.mmds.org/


 Go to www.gradiance.com/services 
 Create an account for yourself. 

 Passwords are >10 letters and digits, at least one of 
each. 

 Register for class 3E5A44A9 
 You can try homeworks as many times as you 

like. 
 When you submit, you get advice for wrong 

answers and you can repeat the same problem, 
but with a different choice of answers. 
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 Machine learning is cool, but it is not all you 
need to know about mining “big data.” 

 I’m going to cover some of the other ideas that 
are worth knowing. 
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 How do we find “similar” items in a very large 
collection of items without looking at every pair? 

 A quadratic process. 

 Locality-sensitive hashing (LSH) is the general 
idea of hashing items into bins many times, and 
looking only at those items that fall into the 
same bin at least once. 

 Hard part: arranging that only high-similarity 
items are likely to fall into the same bucket. 

 Starting point: “similar documents.” 
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Many data-mining problems can be expressed as 
finding “similar” sets: 

1. Pages with similar words, e.g., for classification 
by topic. 

2. NetFlix users with similar tastes in movies, for 
recommendation systems. 

3. Dual: movies with similar sets of fans. 

4. Entity resolution. 
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 Given a body of documents, e.g., the Web, find 
pairs of documents with a lot of text in 
common, such as: 

 Mirror sites, or approximate mirrors. 

 Application: Don’t want to show both in a search. 

 Plagiarism, including large quotations. 

 Similar news articles at many news sites. 

 Application: Cluster articles by “same story.” 



8 

1. Shingling: convert documents, emails, etc., to 
sets. 

2. Minhashing: convert large sets to short 
signatures, while preserving similarity. 

3. Locality-sensitive hashing: focus on pairs of 
signatures likely to be similar. 
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Docu- 
ment 

The set 
of strings 
of length k 
that appear 
in the doc- 
ument 

Signatures : 
short integer 
vectors that 
represent the 
sets, and 
reflect their 
similarity 

Locality- 
sensitive 
Hashing 

Candidate 
pairs : 
those pairs 
of signatures 
that we need 
to test for 
similarity. 
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 A k-shingle (or k-gram) for a document is a 
sequence of k  characters that appears in the 
document. 

 Example: k=2; doc = abcab.  Set of 2-shingles = 
{ab, bc, ca}. 

 Represent a doc by its set of k-shingles. 



 Documents that are intuitively similar will have 
many shingles in common. 

 Changing a word only affects k-shingles within 
distance k from the word. 

 Reordering paragraphs only affects the 2k 
shingles that cross paragraph boundaries. 

 Example: k=3, “The dog which chased the cat” 
versus “The dog that chased the cat”. 

 Only 3-shingles replaced are g_w, _wh, whi, hic, ich, 
ch_, and h_c. 
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 To compress long shingles, we can hash them 
to (say) 4 bytes. 

 Called tokens. 

 Represent a doc by its tokens, that is, the set 
of hash values of its k-shingles. 

 Two documents could (rarely) appear to have 
shingles in common, when in fact only the 
hash-values were shared. 
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 The Jaccard similarity  of two sets is the size of 
their intersection divided by the size of their 
union. 

 Sim(S, T) = |ST|/|ST|. 
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3 in intersection. 
8 in union. 
Jaccard similarity 
   = 3/8 

S T 
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 Rows = elements of the universal set. 

 Example: the set of all k-shingles. 

 Columns = sets. 
 1 in row e  and column S  if and only if e is a 

member of S. 
 Column similarity is the Jaccard similarity of 

the sets of their rows with 1. 
 Typical matrix is sparse. 
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 C1 C2 

 0 1 
 1 0 
 1 1  Sim(C1, C2) = 
 0 0   2/5 = 0.4 
 1 1 
 0 1 

 

* 

* 

* 

* 

* 
* 

* 



18 

 Given columns C1 and C2, rows may be classified as: 
    C1 C2 

   a 1 1 

   b 1 0 

   c 0 1 

   d 0 0 
 Also, a  = # rows of type a , etc. 
 Note Sim(C1, C2) = a/(a +b +c ). 
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 Imagine the rows permuted randomly. 
 Define minhash function h(C) = the first row (in 

the permuted order) in which column C has 1. 
 Use several (e.g., 100) independent hash 

functions to create a signature for each column. 
 The signatures can be displayed in another 

matrix – the signature matrix – whose columns 
represent the sets and the rows represent the 
minhash values, in order for that column. 
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Input matrix  

0 1 0 1 

0 1 0 1 

1 0 1 0 

1 0 1 0 

1 0 1 0 

1 0 0 1 

0 1 0 1  3 

4 

7 

6 

1 

2 

5 

Signature matrix M 

1 2 1 2 

5 

7 

6 

3 

1 

2 

4 

1 4 1 2 

4 

5 

2 

6 

7 

3 

1 

2 1 2 1 
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 The probability (over all permutations of 
the rows) that h(C1) = h(C2) is the same as 
Sim(C1, C2). 

 Both are a /(a +b +c )! 
 Why? 

 Look down the permuted columns                   
C1 and C2 until we see a 1. 

 If it’s a type-a  row, then h(C1) = h(C2).  If a 
type-b  or type-c  row, then not. 
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 The similarity of signatures is the fraction of the 
minhash functions in which they agree. 

 Thinking of signatures as columns of integers, the 
similarity of signatures is the fraction of rows in 
which they agree. 

 Thus, the expected similarity of two signatures 
equals the Jaccard similarity of the columns or 
sets that the signatures represent. 

 And the longer the signatures, the smaller will be the 
expected error. 
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        Input matrix 
1          2           3            4 

0 1 0 1 

0 1 0 1 

1 0 1 0 

1 0 1 0 

1 0 1 0 

1 0 0 1 

0 1 0 1  3 

4 

7 

6 

1 

2 

5 

Signature matrix M 
 1        2          3         4 

1 2 1 2 

5 

7 

6 

3 

1 

2 

4 

1 4 1 2 

4 

5 

2 

6 

7 

3 

1 

2 1 2 1 

 
                 1-3      2-4      1-2 
Col/Col  0.75     0.75     0  
Sig/Sig   0.67    1.00     0 
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 Suppose 1 billion rows. 
 Hard to pick a random permutation of 

1…billion. 
 Also, representing a random permutation 

requires 1 billion entries. 
 And accessing rows in permuted order may 

lead to thrashing. 
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 A good approximation to permuting rows: 
pick, say, 100 hash functions. 

 For each column c and each hash function hi, 
keep a “slot” M(i, c). 

 Intent: M(i, c) will become the smallest value 
of hi(r) for which column c has 1 in row r. 

 I.e., hi(r) gives order of rows for ith permutation. 
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for each row r do begin 
    for each hash function hi do 
    compute hi(r); 
    for each column c  
  if c has 1 in row r  
     for each hash function hi do 

           if hi(r) is smaller than M(i, c) then 

    M(i, c) := hi(r); 

end; 
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Row C1 C2 
  1  1  0 
  2  0  1 
  3  1  1 
  4  1  0 
  5  0  1 

h(x) = x mod 5, i.e., permutation 
     [5,1,2,3,4] 
g(x) = (2x+1) mod 5, i.e., permutation 
     [2,5,3,1,4] 

h(1) = 1 1 ∞ 
g(1) = 3 3 ∞ 

h(2) = 2 1 2 
g(2) = 0 3 0 

h(3) = 3 1 2 
g(3) = 2 2 0 

h(4) = 4 1 2 
g(4) = 4 2 0 

h(5) = 0 1 0 
g(5) = 1 2 0 

Sig1 Sig2 
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 Often, data is given by column, not row. 

 Example: columns = documents, rows = shingles. 

 If so, sort matrix once so it is by row. 
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 General idea: Generate from the collection of 
all elements (signatures in our example) a small 
list of candidate pairs: pairs of elements whose 
similarity must be evaluated. 

 For signature matrices: Hash columns to many 
buckets, and make elements of the same bucket 
candidate pairs. 
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 Pick a similarity threshold t, a fraction < 1. 
 We want a pair of columns c and d of the 

signature matrix M to be a candidate pair if and 
only if their signatures agree in at least fraction t 
of the rows. 

 I.e., M(i, c) = M(i, d) for at least fraction t values of i. 
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 Big idea: hash columns of signature matrix M  
several times. 

 Arrange that (only) similar columns are likely 
to hash to the same bucket. 

 Candidate pairs are those that hash at least 
once to the same bucket. 
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Matrix M 

r  rows 
per band 

b  bands 

One hash 
value 

One signature 
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 Divide matrix M  into b bands of r rows. 
 For each band, hash its portion of each column 

to a hash table with k buckets. 

 Make k as large as possible. 

 Candidate column pairs are those that hash to 
the same bucket for ≥ 1 band. 

 Tune b and r to catch most similar pairs, but 
few nonsimilar pairs. 
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Matrix M 

Buckets 
 

Columns 6 and 7 are 
surely different. 

Columns 2 and 6 
are probably identical 
in this band. 

r  rows b  bands 
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 Suppose 100,000 columns. 
 Signatures of 100 integers. 
 Therefore, signatures take 40Mb. 

 They fit easily into main memory. 

 Want all 80%-similar pairs of documents. 
 5,000,000,000 pairs of signatures can take a 

while to compare. 
 Choose 20 bands of 5 integers/band. 
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 Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328. 

 Probability C1, C2 are not similar in any of the 20 
bands: (1-0.328)20 = .00035 . 

 i.e., about 1/3000th of the 80%-similar underlying 
sets are false negatives. 
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 Probability C1, C2 identical in any one particular 
band: (0.4)5  = 0.01 . 

 Probability C1, C2 identical in ≥ 1 of 20 bands: 
≤ 20 * 0.01 = 0.2 . 

 But false positives much lower for similarities 
<< 40%.  
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       Similarity s of two sets 

Probability 
of sharing 
a bucket 

t 

No chance 
if s < t 

Probability 
= 1 if s > t 
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Similarity s of two sets 

Probability 
of sharing 
a bucket 

Remember: 
probability of equal 
minhash values 
= Jaccard similarity 

t 

False 
positives 

False 
negatives 
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Similarity s  of two sets 

Probability 
of sharing 
a bucket 

t 

s r  

All rows 
of a band 
are equal 

1 - 

Some row 
of a band 
unequal 

( )b  

 
No bands 
identical 

1 - 

At least 
one band 
identical 

t ~ (1/b)1/r  
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 s  1-(1-sr)b 

.2    .006 

.3    .047 

.4    .186 

.5    .470 

.6    .802 

.7    .975 

.8    .9996 
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 Tune r and c to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures. 

 Check that candidate pairs really do have 
similar signatures. 

 Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar sets . 


